
ELIPS: Toward a sensor fusion processor on a chip

Taher Daud, Adrian Stoica, Thomas Tyson, Wei-te Li, and James Fabunmi(a)
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91 109

(a)AEDAR Corporation, P.O. Box 1469, Landover, MD 20785

ABSTRACT

The paper presents the concept and initial tests from the hardware implementation of a low-power, high-speed
reconfigurable sensor fusion processor. The Extended Logic Intelligent Processing System (ELIPS) processor is developed to
seamlessly combine rule-based systems, fuzzy logic, and neural networks to achieve parallel fusion of sensor in compact low
power VLSI. The first demonstration of the ELIPS concept targets interceptor functionality; other applications, mainly in
robotics and autonomous systems are considered for the future. The main assumption behind ELIPS is that fuzzy, rule-based
and neural forms of computation can serve as the main primitives of an “intelligent I ’ processor. Thus, in the same way
classic processors are designed to optimize the hardware implementation of a set of fundamental operations, ELIPS is
developed as an efficient implementation of computational intelligence primitives, and relies on a set of fuzzy set, fuzzy
inference and neural modules, built in programmable analog hardware. The hardware programmability allows the processor
to reconfigure into dEfSerent machines, taking the most efficient hardware implementation during each phase of information
processing. Following software demonstrations on several interceptor data, three important ELIPS building blocks (a fuzzy
set preprocessor, a rule-based fuzzy system and a neural network) have been fabricated in analog VLSI hardware and
demonstrated microsecond-processing times.

Keywords: sensor fusion hardware, sensor fusion processor, fuzzy expert system, neural networks, reconfigurable
hardware

1. INTRODUCTION

1.1 A general need for sensor fusion processors

With the advent of recent increasingly high-performance sensors and processing power a plethora of novel applications are
imagined using multiple sensors, many times of various complementary nature. Novel architectures, algorithms and
hardware are required to optimally address the sensor fusion challenges of high-bandwidth, often noisy, sometimes
contradictory data. The problem of using more sensors with higher data rates is aggravated by the need for faster response
time, which demands higher levels of computational power. The traditional approach is to builduse increasingly powerful
general-purpose processors. Yet, classical algorithms for fusing data (originating in preponderant Bayesian approaches) face
challenges in addressing the sensor-fusion problem and need complementedoverridden by novel approaches, such as the
ones coming from the computational intelligence research.

Computational intelligence techniques, such as fuzzy logic and neural networks combined with the more traditional Artificial
Intelligence paradigm of expert systems proved efficient in a solving a category of problems for which an accurate
mathematical formulation of models was either not feasible or practically impossible to compute in useful time. The most
eloquent examples of such problems are in pattern recognition and decision-making applications. These techniques are
essentially parallel, and thus it is natural to build dedicated processors efficient for these types of operations, which would
function in stand-alone mode or as co-processors to provide high-speed computation on massive amounts of data in parallel
mode. While these processors can be built both in digital or analog hardware, the massive amount of interconnection lines of
a parallel implementation and the power requirements encountered in certain space, military or commercial applications such
as hand-held devices make the idea of an analog ASIC processor preferable. An example of such an application requiring
low power fast processing of sensor data is associated with the discrimination performed onboard interceptors.

2.2 Discriminating Interceptor Technology requirements for an on-board sensor fusion processor
The Ballistic Missile Defense Organization (BMDO) is conducting the Discriminating Interceptor Technology Program
(DITP) for the development of advanced and enabling fast frame seeker capabilities. The challenge for the technology is to
combat more complex future threats facing the National and Theater Missile Defense (NMD/TMD). The objective is to
develop miniaturized interceptor components and subsystems to meet serious space, weight, and power constraints [I]. In
this regard, part of a major effort is directed towards the development of new sensor data fusion processing technology that
will particularly address high speed and on-board autonomy. This capability can achieve earlier target acquisition, thereby
extending the time-to-engage and reducing the dependence on the external battle management and off-board surveillance
assets [11.
Once the initially required off-board battle management intelligence is provided to the seeker, the primary goal of the DITP is
to exploit the multi-phenomenological sensor data obtained from on-board LADAR and infrared detector arrays for threat
engagement via development and integration of real-time sensor fusion algorithms and processors. The overriding
hypothesis is that sensor data fusion at three levels (i.e., signal, feature, and decision) is necessary to improve its capability
and to accommodate a wide variety of missions and targets.
In order to meet the challenge of compact, low power, and high-speed on-board data processing, a novel intelligent sensor
data fusion processing architecture, termed the Extended Logic Intelligent Processing System (ELIPS), has been developed.
ELIPS integrates the analog hardware technology of neural networks, fuzzy logic, and expert rule processing with the
conventional digital processing using a host computer. The individual modules are designed to be reconfigurable and
cascadable. In addition, the overall architecture has been developed to be flexible enough for rerouting of signals to any
required processing module by having an interconnecting network with switching arrays.
This paper briefly describes the ELIPS concept and architecture, focusing more on the hardware implementation of the
individual ELIPS component modules. Experiments with test chips implementing ELIPS modules illustrate the performance
of the analog ASIC implementation.

2. FUZZY, EXPERT AND NEURAL COMPUTATION: FUNDAMENTALS AND PREVIOUS
DEDICATED HARDWARE IMPLEMENTATIONS

2.1 Fundamentals of fuzzy, expert and neural computation

Expert systems are considered in the sensor fusion literature to have a variety of utilities. An example detailed in [2] is
guiding the user in defining the architecture for the sensor fusion system. Fuzzy logic and neural networks are also becoming
widely accepted in the sensor fusion community as techniques which proved powerful in sensor fusion applications [3], [4].
Conditional rule-based systems are using rules of the form “IF a is A AND b is B THEN y is Y’ where a, b, and y the input
and output variables respectively, and A, B, Y are classes - in particular fuzzy classes/sets. Thus, a rule-base system can be
seen as accepting input data from measurements or preprocessing and providing outputs as transformed by the rules. In
particular the outputs could be associated with classes to which the inputs cluster and the magnitude of the outputs associated
to the degree of membership to these classes. (Another possible interpretation is that the numbers represent the confidence in
the classification, e.g. 70% confidence that the object is targetl, 20% that it is target2, 10% confidence that it is decoy.

New concepts from fuzzy sets theory have revitalized the use of rule-base system, which can thus better cope with the
imprecision in matching antecedent clauses. The main operations of fuzzy reasoning are fuzzification, rule evaluations and
defuzzification. Fuzzification transforms a crisp input to a degree of membership to a fuzzy set and certain rules are evaluated
depending on which fuzzy sets are matched. For certain problems such as classification, this is the end of fuzzy reasoning -
the output results are fuzzy sets and degrees to which they are matched. For example, the output result can be that input
signals match the characteristics of target A to 0.8 extent, targets B in degree 0.4 and decoys in degree 0.3; sometimes this
can be (improperly) expressed as probabilities, i.e., there is 80% chance/probability/confidence that object is target A, etc. If
the desired output is a crisp one, for example an output control signal - the output sets and the associated degrees of
memberships are transformed by a defuzzifier into a crisp value. Amongst the most popular methods for defuzzification is the
center of gravity method, which requires mainly additions and multiplication and division.
Neural networks are parallel computation structures characterized by somatic operation between inputs and weights and
somatic operations aggregating the weighted inputs and usually passing them through a nonlinear function. Different neural
architectures were explored, with different ways of interconnecting the neurons in feed-forward only or in recurrent mode as
well, and with a variety of learning rules.

Requirements for fast processing, compact or low power implementation lead to efforts for developing various hardware
implementations. The nature of computations involved in fuzzy reasoning is essentially parallel (for example, rule
evaluations are independent of each other and can be calculated concurrently). A dedicated parallel hardware solution is
therefore preferable to a software solution on a general-purpose processor and even to a RISC processor with fuzzy-oriented
instructions like VY86C570 (70-microsecond inference speed) [5]. Ideally one would want to preserve high versatility of
general-purpose processors while reaching low-power high-speed operation. Analog offers the advantage of lower power
consumption. While better precision can be obtained in digital implementations, very precise computations are not required
for fuzzy processing; usually 8 bits are considered sufficient for most applications. (This relaxed restriction on precision is
due to the fact that membership fimctions representing fuzzy classes are usually defined by humans, who can do not specify
fuzzy set borders with high precision - usually with less than 8 bits) [7-91.
The same parallelism is true for neural processing, and ideally hardware implementations should be parallel for maximum
efficiency. In the same way as for fuzzy expert systems, large number of interconnections and low power justify analog
VLSI implementations of neural processors. For a detailed justification of analog neural processors see [lo].

L

3. ELIPS CONCEPT AND ARCHITECTURE

The main assumption behind ELIPS is that fuzzy, rule-based and neural forms of computation can serve as the main
primitives of an “intelligent” processor. Thus, in the same way classic processors are designed to optimize the hardware
implementation of a set of fundamental operations, ELIPS is developed as an efficient implementation of computational
intelligence primitives, and relies on a set of fuzzy set, fuzzy inference and neural modules, built in programmable analog
hardware. The hardware programmability allows the processor to reconfigure into different machines, taking the most
efficient hardware implementation during each phase of information processing.
The ELIPS architecture is designed to accomplish, for the first time, a fully parallel implementation and seamless integration
of three artificial/computational intelligence technologies: (1) membership-function-based fuzzy logic; (2) rule-based expert
systems; and (3) massively parallel artificial neural network. In its initial demon’stration ELIPS will perform various DITP
functions of discrimination, recognition, tracking, and homing [2]. It is necessary to develop a design that is hardware-
implementable using very large scale integration (VLSI) technology to provide an ultra low power embodiment in a compact
package, with an unprecedented signal processing speed (1 0 to 15 microseconds for each operation), at least three orders of
magnitude faster compared to a conventional digital machine (e.g. several milliseconds on a personal computer, PC).

ELIPS is envisaged as a synergistic processor incorporating four processing modules illustrated in Figure 1. FSP is a Fuzzy
Set Processor, MERP stands for Multistage Expert Rule Processor, and PFN and PRN refer to Programmable Feed-forward
and Recurrent (feedback) Neural networks, respectively. ELIPS modules are destined to work cooperatively in a variety of
configuration sequences. For example, to implement fuzzy expert reasoning as a processing sequence of FSP, MERP and
PFN modules, fuzzification is performed by FSP, rule evaluation is done by MERP, while defuzzification (when needed) is
done using the PFN.

7
I

Figure 1. ELIPS architecture and main computational modules

4. ELIPS BUILDING BLOCKS AND THEIR HARDWARE IMPLEMENTATION

4.1 The fuzzy set module: FSP

The main function of a fuzzy set processor is signal transformation, which can be interpreted for example as
fuzzification - i.e. association between an input crisp signal and a degree of membership to a fuzzy setlclass, or
signal conditioning/ non-linear transformation, coordinate transformation.

The FSP was designed as a processing module with 16 inputs of 5 membership classes each. The
architecture of the FSP is presented in Figure 2. The chip has 16 analog voltage inputs and 16x5 outputs, and allows digital
programmability of the membership functions for each input variable.

DIGITAL C

Figure 2. FSP architecture

The membership functions have trapezoidal shape, with programmable parameters for the legs and slopes as illustrated in
Figure 3. The position of the legs can be specified with 8-bit resolution and the slope with 5-bit resolution. The equations
that describe the output of a trapezoidal membership function are:

I f X < = A , Y = L o w
If A < X = < (CD+AB)/(B+C), Y=MIN[BX-AB + Low), High]
If (CD+AB)/(B+C) < X < D, Y=MIN[-CX + CD + Low), High]
If X> = D, Y= Low

where A is the location of the left leg, B is the unsigned slope of the left leg, C is the unsigned slope of the right leg, and D is
the location of the right leg. The chip design currently uses Low = 1 volt and High = 4 volts with Vdd = 5 volts.

The schematic diagram in Figure 4 details the processing path of a single membership function circuit (MFC). While inputs
and outputs are in voltage mode for external compatibility, the internal MFC implementation is in current-mode. The input
voltage enters the first processing block which is a Voltage to Current (V/I) converter. Currents proportional to the digital
values of the legs, A and D, are generated in Multiplying Digital to Analog Converters (MDACs). The current corresponding
to the left leg gets subtracted from a copy of the input current, while a different copy of the input current gets subtracted from
the right leg current. The resulting currents, which correspond to the left and right sides of the trapezoid, enter their
appropriate Dividing Digital to Analog Converter (divDAC) where the signals are divided by 5-bit digital values to scale the
slopes. The minimum of the two resulting values is then selected which chooses the side that is along the trapezoid. The top
of the trapezoid is achieved by taking the minimum of the resulting current and the full-scale current, and this result is
converted to the voltage output of the MFC. A test chip for 2 input variable with 5 membership functions calculating the
degree of membership has been implemented and tested. A variety of membership functions generated by the chip is
illustrated in Figure 4.

0

a 3

I II II I I

SNOISn73N03

‘I I

’0 I

‘6

‘8

’L
‘9
‘S

‘P

’E

’Z

‘I

